About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   New rapid diagnostic tool for sepsis: microfluidic biochip for multi-target detection by isothermal amplification

New rapid diagnostic tool for sepsis: microfluidic biochip for multi-target detection by isothermal amplification

Biotechnologies,nanobiology Health and environment technologies, medical devices Life Sciences Technological challenges

Abstract

Sepsis is among the main cause of death across the world, and is caused by severe bacterial infection but can also originate from viruses, fungi or even parasites. In order to drastically increase survival rates, a rapid diagnostic and appropriate treatment is of paramount importance. The commercially available tools for nucleic acid detection by qPCR are able to sense multiple targets. However, these multiplexed analyses arise from the accumulation of analysis channels or reaction chambers where only one target can be detected. The original sample has to be divided, resulting in a loss of sensibility since a smaller amount of targets is available in channels or chambers.
In order to tackle the question of “How to detect multiple targets without a loss in sensibility?”, the PhD candidate will have to develop a multiplexed detection in a single reaction chamber by localized immobilization of LAMP primers (Loop-mediated isothermal amplification) on a solid substrate like COC or glass.
The expected outcome is a biochip allowing for real-time and fast (minutes) detection of several molecular DNA targets including: primers design and selection, primers immobilization on surface, integration of the biochip into a microfluidic cartridge and data collection and management for fluorescence detection of targets.
This innovative work will provide the PhD candidate with strong skills in diverse scientific domains such as molecular biology, surface functionalization, modelling and simulation, in a very multidisciplinary working environment.

Laboratory

Département des Technologies pour l'Innovation en Santé (LETI)
SErvice des Microsystèmes pour l'Intéraction avec le Vivant
Laboratoire Systèmes Microfluidiques et Bio-Ingénierie
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down