All-solid state lithium-ion batteries using sulphide-based electrolytes are among the most studied at present in order to improve energy density, safety and fast charging. Although lithium metal was initially the preferred choice for the anode, the difficulties encountered in its implementation and the performance achieved suggest that alternatives should be proposed. Silicon offers an interesting compromise in terms of energy density and lifetime. However, it is necessary to look at anode materials developed for all-solid state batteries. To this end, we propose to collaborate with CEA Tech Nouvelle-Aquitaine, which has set up a combinatorial synthesis methodology using magnetron sputtering, in order to accelerate the identification of new compositions of silicon-based materials. Libraries of materials with compositions gradient in thin films will be prepared at CEA Tech Nouvelle-Aquitaine and then studied at CEA Grenoble. The most promising compositions will then be prepared by mechanosynthesis and characterised at CEA Grenoble. Significant work will be carried out on milling processes in order to optimise particle size and homogeneity, as well as structure and microstructure. Attention will also be paid to integration in all-solid state cells, drawing on the laboratory's expertise.