About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Numerical optimisation of internal safety devices of batterry cells depending on chemistry

Numerical optimisation of internal safety devices of batterry cells depending on chemistry

Engineering sciences Materials and applications Thermal energy, combustion, flows

Abstract

Thermal runaway (TR) of a battery pack's elementary accumulator is a key factor that can lead to various safety issues, such as fires or explosions, involving both property and people. Several safety devices can prevent and/or mitigate the consequences of thermal runaway, including the PTC (Positive Temperature Coefficient) to limit short-circuit current, the CID (Current Interrupt Device) to disconnect the external electrical terminals from the internal active elements, and the Safety Vent for cell depressurization. Internal gas pressure is the main triggering factor. However, since the gas quantity strongly depends on the chemistry involved, these safety devices should be optimized for future battery generations.

In this PhD thesis, we will develop a methodology for sizing these safety devices through numerical simulations, incorporating all characterizations from the material scale to abusive cell testing. This research will therefore focus on both numerical and experimental aspects in parallel, in collaboration with other laboratories in our department

Laboratory

Département de l’Electricité et de l’Hydrogène pour les Transports (LITEN)
Service Transverses pour Technologies de Conversion électrochimique et électrique
Laboratoire Achitecture Electrique et Hybridation
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down