The culture of adherent cells on microcarriers (MCs) is a promising approach for various bioproduction applications, such as drug manufacturing and delivery, regenerative medicine, and tracking of cellular differentiation. However, the analysis of single cell morphology and behavior without affecting the substrate integrity remains a major challenge. Lens-free holographic imaging is emerging as a promising solution for real-time, non-invasive monitoring of cellular processes. This technique captures wide field of view images without requiring exogenous labeling or sample manipulation, thus preserving the integrity of the cellular environment.
This thesis proposes the development of a 3D lens-free imaging system to monitor cells on MCs in near real-time. The microscope will be coupled with advanced algorithms for data reconstruction and analysis in on-line bioreactors. The use of deep learning techniques will allow for real-time segmentation and analysis of single cells, facilitating the tracking of cellular dynamics. This innovative project paves the way to a non-invasive monitoring of 3D multicellular samples, with potential applications on organ-on-chip and more complex organoids systems.