With the advancement of opto-electronic technology, 3D patterns with sub micrometer dimensions are more and more integrated in the device, especially on imaging and AR/VR systems. To fabricate such 3D structures using standard lithography technique requires numerous process steps: multiple lithography and pattern transfer, which is time and resource consuming.
With optical grayscale lithography, such 3D structures can be fabricated in single lithography step, therefore reducing significantly the number of process steps required in standard lithography. For high volume manufacturing of such 3D patterns, optical grayscale lithography with Deep-UV (DUV), 248nm and 193nm are the most relevant, as it is compatible with industrial production line. This technique of 3D lithography is however more complex than it seems, which requires advance lithography model and data-preparation flow to design optical mask corresponding to the desired 3D pattern.