About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Optimising the durability of high-temperature metal alloys: exploring new oxidation conditions

Optimising the durability of high-temperature metal alloys: exploring new oxidation conditions

Condensed matter physics, chemistry & nanosciences Solid state physics, surfaces and interfaces Ultra-divided matter, Physical sciences for materials

Abstract

The aim of the OPTIMIST exploratory project is to increase the service life of metal alloys (alumina and chromia forming alloys) by forming a protective oxide layer, as is almost always the case to protect alloys from corrosion. The great originality of OPTIMIST will consist in forming an oxide layer with a minimum of 0D (point defects) and 2D (grain boundaries) structural defects. This objective will be based on two distinct strategies: the first will consist of forming a so-called endogenous oxide layer, i.e. by pre-oxidising the substrate by carefully choosing the pre-oxidation conditions (temperature, oxidising medium, oxygen partial pressure) in two types of Rhines Pack specifically developed at CEA/DES and IJL; the second will consist of forming a so-called exogenous oxide layer, i.e. created by a deposition technique: the HiPIMS recently commissioned at the CEA/INSTN. Different pre-oxidation conditions (for the endogenous layer) and process conditions (for the exogenous layer) will be investigated, then their 0D and 2D defects will be characterised at SIMaP using a novel combination of cutting-edge structural (TEM-ASTAR), chemical (atom probe, SIMS, nano-SIMS) and electronic (PEC PhotoelEctroChemistry) techniques. Finally, these characterised samples will be corroded in two environments (in air and in molten salts) at high temperatures to assess the effectiveness of the protection compared with conventional pre-oxidation. The stages of oxide growth, its stoichiometry and its microstructure (grain size and shape, nature of the grain boundaries) will thus be identified as a function of the endo and exogenous growth conditions so as to control them in order to achieve an oxide layer containing as few defects as possible.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de recherche en Corrosion et Comportement des Matériaux
Laboratoire de Modélisation, Thermodynamique et Thermochimie
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down