About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomography

Optimization of gamma radiation detectors for medical imaging. Time-of-flight positron emission tomography

Corpuscular physics and outer space Health and environment technologies, medical devices Particle physics Technological challenges

Abstract

Positron emission tomography (PET) is a nuclear medical imaging technique widely used in oncology and neurobiology. The decay of the radioactive tracer emits positrons, which annihilate into two photons of 511 keV. These photons are detected in coincidence and used to reconstruct the distribution of tracer activity in the patient's body.
We are offering you the opportunity to contribute to the development of an ambitious, patented technology: ClearMind.
You will work in an advanced instrumentation laboratory in a particle physics environment.
Your first task will be to optimize the "components" of ClearMind detectors, in order to achieve nominal performance.
We'll be working on scintillating crystals, optical interfaces, photo-electric layers and associated fast photo-detectors, readout electronics.
We will then characterize the performance of the prototype detectors on our measurement benches, which are under continuous development. The data acquired will be interpreted using in-house analysis software written in C++ and/or Python.
Finally, the physics of our detectors will be modeled using Monté-Carlo simulation (Geant4/Gate software), and we will compare our simulations with our results on measurement benches. A special effort will be devoted to the development of ultra-fast scintillating crystals in the context of a European collaboration.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Service de Physique des Particules
Groupe Santé et Energie (GSE)
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down