



Initially associated with neurodegenerative diseases, prion-like proteins (PrLPs) are now recognized as key physiological players in cellular plasticity and stress response. These proteins often contain an intrinsically disordered domain rich in glutamine and asparagine, known as a prion-like domain (PrLD), capable of switching between soluble, condensed, or amyloid states. Notable examples include CPEB in Aplysia, involved in synaptic memory, MAVS in antiviral defense, MED15 and FUS in transcriptional regulation and nucleocytoplasmic condensate dynamics, and ELF3 in plants, whose amyloid polymerization controls flowering and photoperiodic responses. In fungi, Sup35, Ure2p, and HET-s serve as experimental models of functional prions, demonstrating that reversible aggregation can act as a regulatory or adaptive mechanism. These conformational transitions are now viewed as adaptive molecular strategies rather than pathological anomalies.
This PhD project aims to trace the origin and diversification of prion-like proteins across eukaryotes, testing the hypothesis that major paleoclimatic crises have episodically promoted the emergence and duplication of genes encoding PrLDs through microsatellite expansion and transposable element activity. The project will combine large-scale phylogenomic analyses, PrLD domain detection, and modeling of selective pressures to map the key stages in the functional evolution of PrLPs and their links to stress tolerance.

