About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Perovskite devices for solar hydrogen production

Perovskite devices for solar hydrogen production

Chemistry Condensed matter physics, chemistry & nanosciences

Abstract

Project Overview:
The PhD thesis is part of the ICARUS European project, aiming to develop efficient solar energy conversion systems for a carbon-neutral future. The project focuses on integrating photoelectrochemical (PEC) water splitting and photovoltaic (PV) power generation.

Key Objectives:
•Develop innovative metal halide perovskite solar cells with tunable bandgaps for broader light absorption.
•Optimize printed carbon-based solar cells and scaffolds for improved conductivity, mechanical resistance, and durability.
•Incorporate innovative carbon counter electrodes into perovskite devices.
•Upscale and manufacture solar modules.
•Integrate the developed modules into a final PEC prototype.

Research Focus:
The PhD candidate will primarily focus on:
•Printed carbon-based solar cells: Optimizing ink properties, investigating the behavior of printed conductive ink under various conditions, and characterizing conductivity and mechanical resistance.
•Perovskite devices: Incorporating innovative carbon counter electrodes and evaluating their performance and stability.
•Module manufacturing: Upscaling and manufacturing solar modules based on the developed technologies.
•PEC prototype integration: Contributing to the final integration of the PEC prototype.

Expected Outcomes:
The research is expected to contribute to the development of highly efficient and sustainable solar energy conversion systems, supporting the transition to a carbon-neutral future. The findings will have implications for both academic research and industrial applications.

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Innovation, Chimie des Surfaces Et Nanosciences
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down