About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Physico-chemical coupling between a bubbles population and the oxido-reduction of glass-forming liquid

Physico-chemical coupling between a bubbles population and the oxido-reduction of glass-forming liquid

Condensed matter physics, chemistry & nanosciences Solid state physics, surfaces and interfaces Ultra-divided matter, Physical sciences for materials

Abstract

The calcination-vitrification process is the solution used in France for more than 30 years for the conditioning of high-level nuclear waste resulting from the reprocessing of spent fuel. During the vitrification process, the waste is incorporated into a borosilicate glass-forming liquid at more than 1000°C. The glass-forming liquid is homogenized in temperature and composition by stirring and gas bubbling. The incorporation of waste into glass-forming liquid can also lead to gas releases, including those of oxygen resulting from redox reactions between species dissolved in the liquid. It is important to properly control the impact of these gases on the glass and the process.
The redox state of glass-forming liquid at equilibrium between the dissolved species has been the subject of various studies at the CEA in the context of the vitrification of nuclear waste [1, 2]. On the other hand, few studies have been devoted to the kinetics of gas reactions in glass-forming liquid [3, 4]. The objective of this thesis aims to study and model the impact of gas bubbles, whatever their nature, on the redox of melting and the kinetics of associated reactions. An approach combining experimentation and digital modeling will be adopted.
The desired candidate will have a taste for experimentation, characterization and interpretation of results addressing different scientific fields (physico-chemistry of materials). All experiments will be carried out on non-radioactive elements and will involve processing by digital modeling. This PhD. thesis will allow acquiring valuable professional experience in the glass and nuclear industry.

Laboratory

Département de recherche sur les Procédés et Matériaux pour les Environnements complexes
Service d’Etudes des Matériaux et de l’Etanchéité
Laboratoire de Formulation et Caractérisation des Matériaux minéraux
Paris Sciences et Lettres
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down