About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Polycrystalline numerical simulations of the mechanical behavior of fuel rod cladding used in pressurized water reactors

Polycrystalline numerical simulations of the mechanical behavior of fuel rod cladding used in pressurized water reactors

Engineering sciences Materials and applications Mechanics, energetics, process engineering

Abstract

The fuel rods of pressurized water nuclear reactors are made of uranium oxide pellets stacked in zirconium alloy tubes. In reactor, these materials undergo mechanical loading that lead to their irreversible deformation. In order to guarantee the safety and increase the performance of nuclear reactors, this deformation must be modeled and predicted as precisely as possible. In order to further improve the predictivity of the models, the polycrystalline nature of these materials as well as the physical deformation mechanisms must be taken into account. This is the objective of this study, which consists of developing a physically based multi-scale numerical model of the fuel rod cladding.
The mechanical behavior of metallic materials is usually modeled by considering the material as homogeneous. In fact metallic materials are made of many crystalline grains clustered together. The behavior of the material is therefore the result of the deformation of individual grains but also their interactions between each other. In order to take into account the polycrystalline nature of the material, mean-field self-consistent polycrystalline models have been developed for many years. These models are based on the theory of homogenization of heterogeneous materials. Recently, a polycrystalline model, developed in a linear and isothermal framework, has been coupled with an axisymmetric 1D finite element calculation to simulate the in-reactor deformation of cladding tubes. A complex mechanical loading history, mimicking the stresses and strains experienced by the cladding has been simulated.
The objective of this PhD work is to extend the field of application of this model in particular by applying it to a non-linear framework in order to simulate high stress loadings, to extend it to anisothermal conditions but also to carry out 3D finite element simulations with at each element and each time step a simulation using the polycrystalline model. These theoretical and numerical developments will finally be applied to the simulation of the behavior of fuel rods in a power ramp situation thanks to its integration into a software platform used for industrial applications. This approach will allow to better assess the margins available to operate the reactor in a more flexible manner, allowing it to adapt to changes in the energy mix in complete safety.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de Recherche en Matériaux et procédés Avancés
Laboratoire d’Analyse Microstructurale des Matériaux
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down