About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Precise time tagging and tracking of leptons in Enhanced Neutrino Beams with large area PICOSEC-Micromegas detectors

Precise time tagging and tracking of leptons in Enhanced Neutrino Beams with large area PICOSEC-Micromegas detectors

Corpuscular physics and outer space Particle physics

Abstract

The ENUBET (Enhanced NeUtrino BEams from kaon Tagging) project aims to develop a monitored neutrino beam with a precisely known flux and flavor composition, enabling percent-level precision in neutrino cross-section measurements. This is achieved by instrumenting the decay tunnel to detect and identify charged leptons from kaon decays.
The PICOSEC Micromegas detector is a fast, double-stage micro-pattern gaseous detector that combines a Cherenkov radiator, a photocathode, and a Micromegas amplification structure. Unlike standard Micromegas, it operates with amplification also occurring in the drift region, where the electric field is even stronger than in the amplification gap. This configuration enables exceptional timing performance, with measured resolutions of about 12 ps for muons and ~45 ps for single photoelectrons, making it one of the fastest gaseous detectors ever developed.
Integrating large-area PICOSEC Micromegas modules in the ENUBET decay tunnel would provide sub-100 ps timing for lepton tagging, improving particle identification, reducing pile-up, and enhancing the association between detected leptons and their parent kaon decays — a key step toward precision-controlled neutrino beams.
Within the framework of this PhD work, the candidate will optimize and characterize 10 × 10 cm² PICOSEC Micromegas prototypes, and contribute to the design and development of larger-area detectors for the nuSCOPE experiment and the ENUBET hadron dump instrumentation.

Laboratory

Institut de recherche sur les lois fondamentales de l’univers
Département d’Electronique, des Détecteurs et d’Informatique pour la physique
DÉtecteurs: PHYsique et Simulation
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down