



The ENUBET (Enhanced NeUtrino BEams from kaon Tagging) project aims to develop a monitored neutrino beam with a precisely known flux and flavor composition, enabling percent-level precision in neutrino cross-section measurements. This is achieved by instrumenting the decay tunnel to detect and identify charged leptons from kaon decays.
The PICOSEC Micromegas detector is a fast, double-stage micro-pattern gaseous detector that combines a Cherenkov radiator, a photocathode, and a Micromegas amplification structure. Unlike standard Micromegas, it operates with amplification also occurring in the drift region, where the electric field is even stronger than in the amplification gap. This configuration enables exceptional timing performance, with measured resolutions of about 12 ps for muons and ~45 ps for single photoelectrons, making it one of the fastest gaseous detectors ever developed.
Integrating large-area PICOSEC Micromegas modules in the ENUBET decay tunnel would provide sub-100 ps timing for lepton tagging, improving particle identification, reducing pile-up, and enhancing the association between detected leptons and their parent kaon decays — a key step toward precision-controlled neutrino beams.
Within the framework of this PhD work, the candidate will optimize and characterize 10 × 10 cm² PICOSEC Micromegas prototypes, and contribute to the design and development of larger-area detectors for the nuSCOPE experiment and the ENUBET hadron dump instrumentation.

