About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   ROLE OF UNFOLDED PROTEIN RESPONSE IN MAINTAINING THE SPERMATOGONIAL STEM CELL POOL IN THE ADULT MOUSE

ROLE OF UNFOLDED PROTEIN RESPONSE IN MAINTAINING THE SPERMATOGONIAL STEM CELL POOL IN THE ADULT MOUSE

Cellular biology, physiology and cellular imaging Genomics, proteomics Life Sciences

Abstract

Adverse conditions (oxidative stress, imbalanced lipid, glucose or calcium levels, or inflammation) induce the accumulation of abnormal proteins resulting in ER stress. The Unfolded Stress Response (UPR) is activated to restore cellular homeostasis, but severe or chronic stress results in apoptotic cell death. Uncontrolled UPR signaling promotes many human diseases (diabetes, Parkinson's, Alzheimer's, liver disease, cancer...), but nothing is known about its implication in adult male sterility. Spermatozoa production relies on Spermatogonial Stem Cells (SSC) which are maintained by self-renewal throughout life. We have shown that the clonogenic activity of SSC is drastically impaired after ER stress through differentiation entry. An HTS screen has highlighted 2 of the 3 UPR branches as being involved in the clonogenic activity of SSC in vitro. The role of these 2 UPR pathways will be further investigated in SSC cultures of mice to determine whether they are involved in the induction of cell death or in the balance between self renewal and differentiation. In treated SSC cultures, cell death, cell cycle, induction of differentiation and synergy between UPR pathways will be analyzed. As the effect of each pathway is mediated by transcriptional factors, the target genes will be characterized by RNAseq in order to identify the gene networks controlled by UPR effectors and involved in the fate of SSC. For the most relevant pathway, an in vivo study will confirm the role of the UPR effector in CSS property.

Laboratory

Institut de biologie François JACOB
IRCM_Institut de recherche en radiobiologie cellulaire et moléculaire
Laboratoire des Cellules Souches Germinales
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down