With the rapid expansion of wireless networks and the imminent arrival of 6G, the need for highly efficient communication systems has never been more critical. In this context, frequencies beyond 140 GHz emerge as a key frontier, where cutting-edge technologies leverage advanced semiconductors like InP, delivering unmatched performance beyond what SiGe solutions can achieve. However, III-V components remain expensive, manufactured on small substrates (100 mm for InP), and incompatible with silicon production lines, which ensure higher industrial yields.
In this context, CEA-LETI, in collaboration with CNRS-LTM, is developing a new HBT transistor technology in which the base layer is made of antimonides, having already demonstrated frequency performance beyond the THz range. To enable integration with Si-CMOS fabrication processes, a novel approach for ohmic contact formation is required. This involves selective epitaxial regrowth of a suitable semiconductor material on the base layer of the HBT-GaAsSb transistor.
The PhD candidate will be responsible for identifying the optimal material that meets the required criteria, based on experiments conducted with the epitaxy team, advanced physical characterizations (ToF-SIMS, HR-TEM, EDX), and band structure modeling of the formed heterojunctions. This research will also be complemented by the fabrication of technological test structures to extract the key electrical parameters necessary for optimizing the DC and RF performance of the HBT transistor.