About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Stabilization of secondary phases in nanoreinforced ferritic steels: High-throughput screening approach of chemical compositions

Stabilization of secondary phases in nanoreinforced ferritic steels: High-throughput screening approach of chemical compositions

Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications Ultra-divided matter, Physical sciences for materials

Abstract

Ferritic steels reinforced by oxide dispersion strengthening (ODS) are considered for use in 4th Generation and fusion nuclear reactors due to their excellent thermomechanical properties and stability under irradiation. However, these steels are weakened by secondary phases resulting from complex interactions between alloying elements and interstitials (C, N, O) introduced during their processing. Some alloying elements (such as Nb, V, Zr, Hf) could potentially stabilize these undesirable phases and mitigate their detrimental effects on the mechanical behavior of ODS steels. This thesis aims to develop a high-throughput screening method to identify optimal alloy compositions by combining rapid fabrication and characterization techniques. The PhD student will synthesize various compositions of ODS steels through powder metallurgy and carry out chemical, microstructural, and mechanical characterizations. This work will enhance the understanding of interstitial stabilization mechanisms and propose effective methodologies for characterizing new materials. The PhD student will gain in-depth knowledge in metallurgy and data processing, providing opportunities in industry, nuclear start-ups, and research.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service de Recherche en Matériaux et procédés Avancés
Laboratoire de Technologie des Matériaux Extrêmes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down