This subject addresses the visualization and quantification of deformation fields in semiconductor materials, using synchrotron radiation techniques. The control of the deformation is fundamental to optimize the electronic transport, mechanical and thermal properties.
In a dual technique approach we will combine the determination of the local deviatoric strain tensor by scanning the sample under a polychromatic nano beam (µLaue) and a monochromatic full field imaging with a larger beam (dark field x ray microscopy, DFXM).
New developments of the analysis will be focused on 1/ the improvement of the accuracy and speed of the quantitative strain field determination, 2/ the analysis of strain gradient distributions in the materials, and 3/ the determination of the dynamic strain field in piezoelectric materials through stroboscopic measurements. To illustrate these points, three scientific cases corresponding to relevant microelectronic materials of increasing complexity will be studied:
1- Static strain fields surrounding metallic contacts, such as high-density through silicon vias (TSV) in CMOS technology.
2- Strain gradients in Ge/GeSn complex heteroepitaxial structures with compositional variations along the growth direction.
3- Dynamical strain in LiNbO3 surface acoustic wave resonators with resonance frequency in the MHz range bulk
Establishing this approach will mean moving a step forward towards more efficient microelectronics and strain engineering.