About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Study of new photodiode architecture for IR imagers

Study of new photodiode architecture for IR imagers

Photonics, Imaging and displays Technological challenges

Abstract

In the field of high-performance infrared detection, CEA-LETI plays a leading role in the development of the HgCdTe material, which today offers such performance that it is integrated into the James Webb Space Telescope (JWST) and allows the observation and study of deep space with unparalleled precision to date. However, we believe that it is still possible to make a significant step forward in terms of detection performance. Indeed, it seems that a fully depleted structure, called a PiN photodiode, could further reduce the dark current (and thus reduce noise and gain sensitivity at low photonic flux) compared to the non-fully depleted structures currently used. This architecture would represent the ultimate photodiode and would allow either a further increase in performance at a given operating temperature or a significant increase in the operating temperature of the detector, with the potential to open new fields of application by greatly simplifying cryogenics.

Your role in this thesis work will be to contribute to the development of the ultimate photodiode for very high-performance infrared detection, characterize and simulate the PiN photodiodes in HgCdTe technology manufactured on our photonic platform.

Candidate Profile:

You hold a Master's degree in optoelectronics and/or semiconductor material physics and are passionate about applied research.

The main technical skills required are: semiconductor component physics, optoelectronics, data processing, numerical simulations, interest in experimental work to carry out characterizations in a cryogenic environment but also theoretical work to carry out numerical simulations.

The PhD student will be integrated into a multidisciplinary team ranging from the growth of II-VI materials to electro-optical characterization, including microelectronics manufacturing processes in clean rooms and the packaging issues of such objects operating at low temperature.

Laboratory

Département d’Optronique (LETI)
Service des Composants pour l’Imagerie
Laboratoire d’Imagerie IR
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down