.Bioenergy with Carbon Capture and Storage (BECCS) uses biomass energy while capturing the carbon dioxide released by the process, resulting in negative emissions into the atmosphere. The reference process in Europe uses potassium carbonate but at atmospheric pressure [1], whereas its sequestration or hydrogenation into sustainable molecules requires high pressures.
The thesis consists in acquiring new thermodynamic and thermo-chemical data at high temperature/pressure [2] required for the energy optimization of such a process, and integrating them into a thermodynamic model.
The overall process will then be reassembled in order to quantify the expected energy gain.
The thesis will be carried out at the Thermodynamic Modeling and Thermochemistry Laboratory (LM2T), in collaboration with LC2R (DRMP/SPC) for the experimental part.
References :
[1]K. Gustafsson, R. Sadegh-Vaziri, S. Grönkvist, F. Levihn et C. Sundberg, «BECCS with combined heat and power: assessing the energy penalty,» Int. J. Greenhouse Gas Control, vol. 110, p. 103434, 2021.
[2] S. Zhang, X. Ye et Y. Lu, «Development of a Potassium Carbonate-based Absorption Process with Crystallization-enabled High-pressure Stripping for CO2 Capture: Vapor–liquid Equilibrium Behavior and CO2 Stripping Performance of Carbonate/Bicarbonate,» Energy Procedia, 2014