Access to clean and affordable energy seems more crucial than ever in the current context of climate emergency. Several avenues have been explored for years, but many technological barriers remain to be overcome in order to realise them, as they represent significant technological breakthroughs. Whether it's for energy storage or 4th generation nuclear reactors, the molten salt medium used as a heat transfer fluid and/or fuel is highly corrosive, making the choice of structural materials very complex.
The objective of the proposed PhD project within the Service of Corrosion and Material Behaviour (S2CM) is the comprehensive study of the behaviour of promising nickel-based alloys in the NaCl-MgCl2-CeCl3 ternary system, representative of the salt used in the French molten salt reactor concept, at 600°C. By "comprehensive", this refers to everything from specimen preparation to the multi-scale and multi-technique characterisation of corrosion products. This topic has therefore a strong experimental character and focuses on understanding corrosion mechanisms. The influence of fission products, such as tellurium or sulphur, on corrosion mechanisms will be specifically studied.