The general aim of the thesis is to study the feasibility of a component for the DEMO fusion reactor using Wire Additive Manufacturing (WAM). To achieve this, the PhD student will first design and manufacture demonstration parts representative of different sub-parts of the component in the laboratory's additive manufacturing cells. He or she will use CAD/CAM software to manufacture parts of increasing size and complexity, while ensuring repeatability.
These parts will be subjected to characterization work, firstly dimensional, to check their geometric conformity with the project specifications; but also microstructural and metallurgical, to guarantee manufacturing quality, in particular the absence of defects within the material (porosity, inclusions...) or metallurgical phases detrimental to its mechanical strength.
Finally, the PhD student will also be required to simulate the manufacture of certain parts using the finite element method, in order to analyze the evolution of parameters of interest, such as temperature, during manufacture, and to estimate the state of deformation and stress after manufacture. These simulations can be used to correct certain discrepancies between expected and actual results, within the framework of a calculation-test dialogue that will see the implementation of instrumentation also serving to validate the models. These simulations will be carried out using the Cast3M finite element code developed at CEA.
Translated with DeepL.com (free version)