About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Superlattices for the characterization of diffusion under irradiation at the atomic scale

Superlattices for the characterization of diffusion under irradiation at the atomic scale

Engineering sciences Materials and applications

Abstract

Metal alloys used in nuclear applications are subjected to relatively low temperatures (below 450°C) for long periods of time (more than 10 years). At these temperatures, the kinetics of the diffusion-controlled microstructure transformations are slow. The appearance of certain undesirable phases, likely to embrittle the material, can occur after several years of service. Therefore, diffusion coefficients play a crucial role as input data for modeling the evolution of these microstructures using phenomenological models. However, experimental determination of diffusion coefficients at low temperatures (T < 600°C) is extremely tricky, especially because of the need to characterize nanometric diffusion lengths, a difficulty made all the more difficult in the presence of irradiation.
With the development of chemical analysis by transmission electron microscopy (TEM) and atom probe tomography (APT), it is now possible to experimentally access very small diffusion lengths and thus determine low-temperature diffusion coefficients using superlattices, which consist of stacking nanometric layers of different chemical compositions. We can even characterize the effect of irradiation on diffusion by performing ion irradiations, enabling us to simulate the changes caused by neutron irradiation without activating the materials. The aim of this thesis is to develop a methodology and characterize diffusion under and outside irradiation in a ternary system of interest (Ni-Cr-Fe), representative of the steels and high-entropy considered in the nuclear industry.
This thesis is an opportunity to work with cutting-edge experimental techniques, in close collaboration with a team of theoretician in the same department, as well as with teams specializing in the development of superlattices at UTBM in Belfort and CINAM in Marseille.

Laboratory

Département de Recherche sur les Matériaux et la Physico-chimie pour les énergies bas carbone
Service d’Etudes des Matériaux Irradiés
Laboratoire de Microscopie et d’Etudes de l’Endommagement
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down