The rise of room-temperature applications like single photon emission of the negatively charged nitrogen-vacancy NV center in diamond has renewed the interest in the search for materials having a quasi-atomic system QAS analogous to that of NV, mainly characterized by the presence of well localized in-gap defect levels generate occupied by electrons and leading to high spin states. In this Ph.D. work, theoretical methods will be used to design new QASs analogous to the NV center as well as, in selected QAS, to predict charge states and explore the effect of the proximity of the surface on the thermodynamic stability and on the spin state structure. The objectives are to design new QASs; To predict charge states of selected QASs in the bulk of the host material; To study changes in the charge state brought by the proximity of the surface; To extend the Hubbard model used to compute the excited states and to account for the electron-lattice interaction in the calculation of the excited states; To study the effect of the presence of deep level states in the band gap on the transport of electrons and phonons. The methodology developed at LSI to design new QASs with high spin states will be exploited and new systems analogous to the NV center will be looked for. Density functional theory (DFT) and a Hubbard model developed at LSI will be the main tools of this PhD.