About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Theoretical design of quasi-atomic systems in the band gap of semiconductors/insulators for quantum application

Theoretical design of quasi-atomic systems in the band gap of semiconductors/insulators for quantum application

Condensed matter physics, chemistry & nanosciences New computing paradigms, circuits and technologies, incl. quantum Solid state physics, surfaces and interfaces Technological challenges

Abstract

The rise of room-temperature applications like single photon emission of the negatively charged nitrogen-vacancy NV center in diamond has renewed the interest in the search for materials having a quasi-atomic system QAS analogous to that of NV, mainly characterized by the presence of well localized in-gap defect levels generate occupied by electrons and leading to high spin states. In this Ph.D. work, theoretical methods will be used to design new QASs analogous to the NV center as well as, in selected QAS, to predict charge states and explore the effect of the proximity of the surface on the thermodynamic stability and on the spin state structure. The objectives are to design new QASs; To predict charge states of selected QASs in the bulk of the host material; To study changes in the charge state brought by the proximity of the surface; To extend the Hubbard model used to compute the excited states and to account for the electron-lattice interaction in the calculation of the excited states; To study the effect of the presence of deep level states in the band gap on the transport of electrons and phonons. The methodology developed at LSI to design new QASs with high spin states will be exploited and new systems analogous to the NV center will be looked for. Density functional theory (DFT) and a Hubbard model developed at LSI will be the main tools of this PhD.

Laboratory

Institut rayonnement et matière de Saclay
Laboratoire des Solides Irradiés
Laboratoire des Solides Irradiés
IP. Paris
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down