Advances in power electronics, electric motors and batteries, for example, are leading to a significant increase in heat production during operation. This increase in power density combined with reduced heat exchange surfaces amplifies the challenges associated with heat dissipation. The absence of adequate dissipation leads to overheating of electronic components, impacting on their performance, durability and reliability. It is therefore essential to develop a new generation of heat dissipating materials incorporating a structure dedicated to this structure.
The objective and innovation of the PhD student's work will lie in the use of highly thermally conductive (nano)fillers that can be oriented in an epoxy resin in a magnetic field. The first area of work will therefore be to electrically isolate the thermally conductive (nano)charges with a high form factor (1D and 2D). The electrical insulation of these charges of interest will be achieved by a sol-gel process. The synthesis will be controlled and optimised with a view to correlating the homogeneity and thickness of the coating with the dielectric and thermal performance of the (nano)composite. The second part will focus on the grafting of magnetic nanoparticles (NPM) onto thermally conductive (nano)fillers. Commercial NPMs will be evaluated as well as grades synthesised in the laboratory. The (nano)composites must have a rheology compatible with the resin infusion process.