The Matter’s Origin from RadioActivity (MORA) experiment searches for a sign of CP violation in nuclear beta decay, via the precise measurement of the so-called D correlation. An innovative technique of in-trap ion polarization for such a measurement enables attaining unprecedented sensitivity to New Physics, which could explain the matter-antimatter asymmetry observed in the universe. With a goal in sensitivity on a non-zero D of a few 10-4, the measurement that MORA is undertaking at Jyväskylä will be competitive with the best limit obtained so far on a non-zero D correlation in neutron decay [5]. To attain such precision regime several weeks of data taking are required along the coming years (2025-2027) at Jyväskylä, both for 23Mg+ and 39Ca+. The data analysis has to be undertaken in parallel. Crosschecks and adaptation of existing simulations of individual detectors of MORA, performed with GEANT4 and PENELOPE Monte Carlo codes, are required to pursue the investigation of systematics effects potentially affecting the final sensitivity on D. Dissemination of the results of the data analysis at national and international conferences will be asked to the PhD student.