About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Understanding the fundamental properties of PrOx based oxygen electrodes through ab-initio and electrochemical modelling for solid oxide cells application

Understanding the fundamental properties of PrOx based oxygen electrodes through ab-initio and electrochemical modelling for solid oxide cells application

Advanced hydrogen and fuel-cells solutions for energy transition Condensed matter physics, chemistry & nanosciences Physical chemistry and electrochemistry Technological challenges

Abstract

Solid Oxide Cells (SOCs) are reversible and efficient energy-conversion systems for the production of electricity and green hydrogen. Nowadays, they are considered as one of the key technological solutions for the transition to a renewable energy market. A SOC consists of a dense electrolyte sandwiched between two porous electrodes. To date, the large-scale commercialization of SOCs still requires the improvement of both their performances and lifetime. In this context, the main limitations in terms of efficiency and degradation of SOCs have been attributed to the conventional oxygen electrode in La0.6Sr0.4Co0.2Fe0.8O3. To overcome this issue, it has recently been proposed to replace this material with an alternative electrode based on PrOx. Indeed, this material has a high electro-catalytic activity for the oxygen reduction and good transport properties. The performance of cells incorporating this new electrode is promising and might enable to reach the targets required for large-scale industrialization (i.e. -1.5A/cm2 at 1.3V at 750°C and a degradation rate of 0.5%/kh). However, it has been shown that PrOx undergoes phase transitions depending on the cell operating conditions. The impact of these phase transitions on the electrode properties and on its performance and durability are still unknown. Thus, the purpose of the PhD is to gain an in-depth understanding of the physical properties for the different PrOx phases in order to investigate their role in the electrode reaction mechanisms. The study will contribute to validate whether PrOx based electrodes are good candidates for a new generation of SOCs and help to identify an optimized electrode using a methodology combining ab-initio calculation with electrochemical modelling.

Laboratory

Département Thermique Conversion et Hydrogène (LITEN)
Service des technologies hydrogène
Laboratoire essais et systèmes
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down