About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Understanding the mechanisms of oxidative dissolution of (U,Pu)O2 in the presence of platinum group metals

Understanding the mechanisms of oxidative dissolution of (U,Pu)O2 in the presence of platinum group metals

Chemistry Condensed matter physics, chemistry & nanosciences Engineering sciences Materials and applications

Abstract

The treatment of MOx fuel, composed of a mixed uranium and plutonium oxide (U,Pu)O2, is aimed at recycling plutonium. Plutonium dioxide (PuO2) is notably difficult to dissolve in concentrated nitric acid. However, by introducing a highly oxidizing agent, such as Ag(II), into the nitric acid, plutonium can be solubilized with fast dissolution kinetics—a process known as oxidative dissolution. The fission products present in irradiated MOx, particularly platinum group metals, can potentially impair the effectiveness of plutonium’s oxidative dissolution through side reactions. For the industrial deployment of this method, it is therefore crucial to understand how platinum group metals influence the dissolution kinetics. Yet, there is currently very limited data on this subject.

This thesis aims to address this knowledge gap. The proposed research involves a parametric experimental study of increasing complexity: initially, the impact of platinum group metals on Ag(II) consumption will be investigated separately, followed by their effect during the dissolution of (U,Pu)O2. These findings will enable the development of a kinetic model for the dissolution process based on the studied parameters.

By the end of this thesis, the candidate, with a strong background in physical or inorganic chemistry, will have gained expertise in a wide range of experimental techniques and advanced modeling methods. This dual competence will open up numerous career opportunities in academic research or industrial R&D, both within and beyond the nuclear sector.

Laboratory

Département de recherche sur les procédés pour la mine et le recyclage du combustible
Service d’études des Procédés de Traitement et de recyclage des combustibles
Laboratoire des procédés de Dissolution et de Chimie aux Interfaces
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down