About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Vertical GaN power devices development using localized epitaxy

Vertical GaN power devices development using localized epitaxy

Electronics and microelectronics - Optoelectronics Emerging materials and processes for nanotechnologies and microelectronics Engineering sciences Technological challenges

Abstract

This PhD offers a unique opportunity to enhance your skills in GaN power devices and develop cutting-edge architectures. You’ll work alongside a multidisciplinary team specializing in materials engineering, characterization, device simulation, and electrical measurements. If you’re eager to innovate, expand your knowledge, and tackle state-of-the-art challenges, this position is a valuable asset to your career!
Vertical GaN power components hold great promise for power applications beyond the kV range. Localized epitaxy of GaN enables the creation of thick structures on Si substrates at a competitive cost, with demonstrated success for diodes and pseudo-vertical transistors. However, this approach’s significant surface area limits the energy density of the devices. This PhD aims to develop denser, fully vertical components using layer transfer methods. You’ll study their electrical characteristics to monitor the impact of technological variations on their performance.
Throughout this PhD, you’ll gain comprehensive knowledge in microelectronics processes, electrical characterization, and TCAD (Technology Computer-Aided Design) simulation. You’ll collaborate with a multidisciplinary team including our partner CNRS-LTM and deepen your understanding of GaN power devices, all while being part of a lab dedicated to the development of wide-bandgap power devices. You will have the opportunity to write publications and patents.

Laboratory

Département Composants Silicium (LETI)
Service Intégrations et Technologies pour les conversions d'énergies
Laboratoire des composants de Puissance à Semiconducteur
Université Grenoble Alpes
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down