About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Development of microfluidic photoreactors for reproducible, quantitative evaluation of photoactive materials, coupled with on-line analysis by mass spectrometry and gas chromatography

Development of microfluidic photoreactors for reproducible, quantitative evaluation of photoactive materials, coupled with on-line analysis by mass spectrometry and gas chromatography

Analytic chemistry Condensed matter physics, chemistry & nanosciences Engineering sciences Instrumentation

Abstract

The development of high performance photoactive materials (catalysts, semiconductors, sensitive films) for chemical conversion under light irradiation requires precise, reproducible and quantitative evaluation methods. Conventional batch approaches suffer from major limitations: poor control over residence time, temperature or light gradients, low exposed specific surface area and variable reproducibility. In this context, microfluidic photoreactors offer a promising alternative for structured screening and fine evaluation of photoactive materials, in particular thanks to their high surface/volume ratio, flow control and geometry adaptable to different irradiation configurations.
This work, linked to the PEPR LUMA SUNRISE project, aims to design, fabricate and characterize photonic microreactors specifically adapted to the fine evaluation of photoactive materials. The aim is to create a platform capable of generating quantitative and comparable data on the performance and stability of these materials, under well-defined conditions of throughput, irradiation and reaction environment, and then to couple them to high-level analytical techniques (GC, MS) for on-line identification of the products generated.
We propose to develop 4 axes during this thesis project: 1) development, characterization and optimization of the microfluidic platform for online liquid and gas measurement; 2) implementation of protocols for the deposition of photoactive materials 3) evaluation of photochemical performance and validation of the system with samples provided (SUNRISE partners) and on the degradation of pollutant by photochemistry (collaboration with a thesis in progress at the laboratory) and 4) Coupling of the reactor to online analytical methods (GC, MS).

Laboratory

Institut rayonnement et matière de Saclay
Service Nanosciences et Innovation pour les Materiaux, la Biomédecine et l’Energie
Laboratoire Interdisciplinaire sur l’Organisation Nanométrique et Supramoléculaire
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down