About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   https://iramis.cea.fr/lidyl/pisp/150720-2/

https://iramis.cea.fr/lidyl/pisp/150720-2/

Condensed matter physics, chemistry & nanosciences Radiation-matter interactions Solid state physics, surfaces and interfaces

Abstract

Recent advances in ultrafast optics and the control of highly nonlinear light–matter interactions now make it possible to generate attosecond light pulses (1 as = 10?¹8 s) through High-Order Harmonic Generation (HHG). This process converts a femtosecond laser pulse into coherent, ultrashort radiation in the extreme ultraviolet (XUV) range (10–150 eV). These unique light sources enable access to electronic dynamics on sub-femtosecond timescales and allow the probing of element-specific transitions that were previously only achievable at large-scale facilities such as synchrotrons. The Attophysics Group at LIDYL, a pioneer in the generation, characterization, and application of attosecond pulses, has recently developed sources driven by beams carrying spin (SAM) or orbital (OAM) angular momentum, opening new avenues for studying chiral and magnetic dynamics. Building on these advances, this PhD project aims to synthesize light fields with time- and space-dependent chirality, exploiting in particular the often-neglected longitudinal component of the electric field. Three regimes will be explored: a linear regime (XUV/IR pump–probe), a strongly nonlinear regime (structured visible–IR fields in chiral samples), and a weakly nonlinear regime (IR pump/XUV probe). This work will open a new class of attosecond physics experiments, bridging fundamental exploration and emerging applications.
The student will acquire practical knowledge about lasers, in particular femtosecond lasers, and hands on spectrometric techniques of charged particles. They will also study strong field physical processes which form the basis for high harmonic generation. They will become an expert in attosecond physics. The acquisition of analysis skills, computer controlled experiments skills will be encouraged although not required.
Details at https://iramis.cea.fr/lidyl/pisp/150720-2/

Laboratory

Institut rayonnement et matière de Saclay
Service Laboratoire Interactions, Dynamique et Lasers
Attophysique
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down