About us
Espace utilisateur
Education
INSTN offers more than 40 diplomas from operator level to post-graduate degree level. 30% of our students are international students.
Professionnal development
Professionnal development
Find a training course
INSTN delivers off-the-self or tailor-made training courses to support the operational excellence of your talents.
Human capital solutions
At INSTN, we are committed to providing our partners with the best human capital solutions to develop and deliver safe & sustainable projects.
Thesis
Home   /   Thesis   /   Understanding the signals emitted by moving liquids

Understanding the signals emitted by moving liquids

Condensed matter physics, chemistry & nanosciences Engineering sciences Mesoscopic physics Thermal energy, combustion, flows

Abstract

Elasticity is one of the oldest physical properties of condensed matter. It is expressed by a constant of proportionality G between the applied stress (s) and the deformation (?): s = G.? (Hooke's law). The absence of resistance to shear deformation (G' = 0) indicates liquid-like behavior (Maxwell model). Long considered specific to solids, shear elasticity has recently been identified in liquids at the submillimeter scale [1].
The identification of liquid shear elasticity (non-zero G') is a promise of discoveries of new liquid properties. For example, do we know that a confined liquid changes temperature under flow? Yet no classical model (Poiseuille, Navier-Stokes, Maxwell) predicts the effect because without long-range correlation between molecules (i.e. without elasticity), the flow is dissipative, therefore athermal. For a change in temperature to be flow induced (without a heat source), the liquid must have elasticity and this elasticity must be stressed [1,2].
The PhD thesis will explore how the mechanical energy of the flow is converted in a thermal response [2]. We will exploit the capacity of conversion to develop a new generation of microfluidic devices (patent FR2206312).
We will also explore the impact of the wetting on the liquid flow, and reciprocally, we will examine how the liquid flow modifies the solid dynamics (THz) of the substrate [3]. Powerful methods only available in Very Large Research Facilities such as the ILL will be used to probe the non-equilibrium state of solid phonons. Finally, we will strengthen our existing collaborations with theoreticians.

The PhD topic is related to wetting, macroscopic thermal effects, phonon dynamics and liquid transport.

1. A. Zaccone, K. Trachenko, “Explaining the low-frequency shear elasticity of confined liquids" PNAS, 117 (2020) 19653–19655. Doi:10.1073/pnas.2010787117
2. E. Kume, P. Baroni, L. Noirez, “Strain-induced violation of temperature uniformity in mesoscale liquids” Sci. Rep. 10 13340 (2020). Doi : 10.1038/s41598-020-69404-1.
3. M. Warburton, J. Ablett, P. Baroni, JP Rueff, L. Paolasini, L. Noirez, “Identification by Inelastic X-Ray scattering of bulk alteration of solid dynamics due to Liquid Wetting”, J. of Molecular Liquids 391 (2023) 123342202

Laboratory

Institut rayonnement et matière de Saclay
Laboratoire Léon Brillouin
Nouvelles Frontières dans les Matériaux Quantiques
Paris-Saclay
Top envelopegraduation-hatlicensebookuserusersmap-markercalendar-fullbubblecrossmenuarrow-down